Mis juhtuks, kui tennisepall lendaks kiirusega 90% valguse kiirusest?

Mis juhtuks, kui näiteks tennisepall lendaks üle võrgu kiirusega 90% valguse kiirusest?

Makrokehi ei ole võimalik sellise kiirusega liikuma panna, küll aga saab kiirendada osakesi. Prootonite kiirus LHC kiirekanalis on 0,999999991c, st valguse kiirusest jääb puudu umbes 3m/s. Kosmilistes kiirtes esineb veelgi kiiremaid osakesi.

Küsimus nii suure kiirusega liikuvast hüpoteetilisest pallist on vastatud Randall Munroe raamatus „Mis oleks kui..? Tõsised teaduslikud vastused absurdsetele hüpoteetilistele küsimustele” („What If?: Serious Scientific Answers to Absurd Hypothetical Questions”). [1] Ameeriklasena võtab autor näiteks loomulikult pesapalli, aga sel kiirusel ei ole erinevus mistahes palliga juhtuvast märkimist väärt.

--------------

Vastab ja joonistab Randall Munroe:

Jätame kõrvale küsimuse, kuidas me saaks pesapalli nii kiiresti liikuma. Eeldame, et tegu on muidu normaalse sööduga, ainult hetkel, kui söötja laseb palli lahti, kiirendab see võluväel kiiruseni 0,9c. Pärast seda hetke kehtib jälle tavaline füüsika.

Mis juhtub? Tuleb välja, et juhtub „päris palju asju” ja see ei lõpe hästi lööjale (ja söötjale samuti mitte) [2]. Istusin füüsika raamatute taha, Nolan Ryani kujuke laual [3], vaatasin hunniku tuumakatsetuste salvestisi ja püüdsin ses kõiges selgusele jõuda. Järgnev on mu parim hinnang selle kohta, mis toimuks nanosekund-nanosekundilt.

Pall liigub nii kiiresti, et kõik muu on praktiliselt paigal. Isegi õhu molekulid seisavad ühel kohal. Õhu molekulid vibreerivad edasi-tagasi kiirusega mõnisada miili tunnis, aga pall liigub nende hulgas kiirusega 600 miljonit miili tunnis. See tähendab, et sel ajal kui pall on mängus, seisavad molekulid lihtsalt tardunult paigal.

Aerodünaamika siin ei rakendu. Tavaliselt voolab õhk ümber kõige, mis õhus liigub, kuid selle palli ees olevatel molekulidel pole aega, et lasta end eest ära trügida. Pall kihutab neile otsa sellise jõuga, et õhu molekulide aatomid tungivad palli pinna aatomitesse. Igast põrkest lahvatab gammakiirgus ja hajuvad osakesed.*

Gammakiirgus ja tuumade killud moodustavad paisuva mulli, mille keskmeks on söödumägi. Algab õhu molekulide lõhkumine ja elektronid kooritakse tuumadelt maha. Õhk staadionil muutub paisuvaks hõõguva plasma mulliks. Mulli välispiir jõuab lööjani peaaegu valguse kiirusega, ainult veidi enne palli.

Palli esiküljel toimuv tuumareaktsioon surub palli tagasi ja aeglustab seda. See on nagu saba ees lendav töötava mootoriga rakett. Kahjuks liigub palli nii kiiresti, et isegi termotuumaplahvatuse kohutav jõud suudab teda vaevu pidurdada. Siiski hakkab see lagundama palli pinnakihti, kihutades laiali pisikesi tükikesi. Need purud liiguvad nii kiiresti, et põrkudes õhu molekulidega käivitavad teise ja kolmanda ringi fusiooni.

Umbes 70 nanosekundiga jõuab pall kodupesale. Lööja isegi ei näe, et söötja on palli teele saatnud, sest infot kandev valgus jõuab kohale peaaegu samal ajal kui pall. Põrkumine õhuga on palli peaaegu täielikult läbi söönud. Nüüd liigub see püssikuuli kujulise paisuva plasmapilvena õhku rammides (põhiliselt süsinik, hapnik, vesinik ja lämmastik) ja käivitades veel täiendavalt fusioonireaktsioone. Lööjat tabab esmalt röntgenkiirguse front, mõni nanosekund hiljem saab ta löögi tuumareaktsioonide saaduste pilvelt.

Kui see jõuab kodupesani, liigub pilve keskpunkt ikka veel valguse kiirusega võrreldava kiirusega. See tabab kurikat, aga lööja, pesa ja püüdja kantakse kaasa läbi väljakupiirde, seejuures nad kõik lagunevad laiali. Röntgenikiirguse ja kuuma plasma ala laieneb ja kerkib, haarates endasse väljakupiirded, mõlemad võistkonnad, tribüünid ja kogu naabruse. Kõik see juhtub esimese mikrosekundiga.

Oletame, et vaatate seda linnalähedase künka tipust. Esimese asjana näete pimestavat valgust, tublisti eredamat kui Päike. Valgus tuhmub mõne sekundiga, kui kasvav tulekera kerkib seenekujuliseks pilveks. Siis saabub suure lärmiga lööklaine, kiskudes puid juurtega maast ja purustades hooneid.

Umbes miili ulatuses on kõik maatasa ja tuletorm ujutab üle ümbritseva linna. Palliväljaku asemel on suur kraater, mille keskpaik jääb mõnisada jalga endisest väljakupiirdest väljapoole.

MLB reegel 6.08(b) soovitab, et sellises olukorras loetaks lööja sööduga pihtasaanuks ja ta saab minna takistuseta esimesele pesale.

* Pärast selle artikli ilmumist võttis minuga ühendust MIT-i füüsik Hans Rinderknecht ja ütles, et nad on oma labori arvutitel seda stsenaariumi simuleerinud. Ta leidis, et palli lennu algul liigub suuremjagu õhu molekule liiga kiiresti, et fusiooni tekitada. Need lähevad pallist otse läbi kuumutades seda aeglasemalt ja ühtlasemalt kui mu algne artikkel kirjeldas.

[1] Autor rõhutab oma raamatus, et ta ei ole teadlane vaid koomiksijoonistaja. Aga ta on huviline ja võtab veidratele küsimustele vastamist tõsiselt, samas rõõmuga ja loominguliselt. Ta peab kodulehte: http://xkcd.com/.

[2] Pesapalli reeglid võib leida Eesti Pesapalli ja Softpalli Liidu kodulehelt: http://www.baseball.ee/et/content/reeglid. Selle vastuse mõistmiseks on hea teada, et söötja viskab pesapalliväljaku keskelt (söödumäelt) palli 18,4m kaugusel kodupesal seisva lööja poole, kes püüab palli kurikaga väljakule tagasi lüüa. Lööjast tahapoole jääb püüdja, väljakupiire, kohtunikud, võistkonnad. Ülejäänud reeglid on mängu seisukohalt olulised, selle küsimuse jaoks mitte.

[3] Nolan Ryan (sündinud 1947) on tuntud pesapallimängja, kelle nimel on mitmeid saavutusi. Ta on kuulus selle poolest, et söötis pika karjääri jooksul regulaarselt kiirusega üle 100mph (161km/h).